top of page

Solving Quadratics

Find the Zeroes

The x-intercepts are called roots, zeroes, or x-intercepts.

 

To find the zeroes, the equation must be in factored form, and one side must always equal 0.

 

Example 1:

x^2 + 11x + 30 = 0              ->This is a simple trinomial

(x + 5)(x+6) = 0                    -> 5 x 6 = 30, 5 + 6 = 11

                                           

x+5=0    x+6=0                   ->to solve for x, you must set each bracket = 0

x=-5        x=-6

 

To check: Substitute both zeroes into the left and right side of the original equation.

 

Example 2:

 

-2b^2 = -13b + 21                     ->Bring everything to one side to make it = 0

0 = 2b^2 - 13b + 21                  ->Factor the complex trinomial -6 x -7 = 42, -6 + -7  = -13

0 = (2b^2 - 6b) - (7b + 21)

0 = 2b (b -3) -7 (b-3)

0 = (2b-7)(b-3)                         ->Set each bracket = 0

 

2b-7 = 0    b-3=0

b = 3.5       b=3

bottom of page